Pore-Forming Proteins as Mediators of Novel Epigenetic Mechanism of Epilepsy

نویسندگان

  • Andrei Surguchov
  • Irina Surgucheva
  • Mukut Sharma
  • Ram Sharma
  • Vikas Singh
چکیده

Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures. In the last two decades, numerous gene defects underlying different forms of epilepsy have been identified with most of these genes encoding ion channel proteins. Despite these developments, the etiology of majority of non-familial epilepsies has no known associated genetic mutations and cannot be explained by defects in identified ion channels alone. We hypothesize that de novo formation of ion channels by naturally unfolded proteins (NUPs) increases neuronal excitability. Altered ionic homeostasis may initiate/contribute to cellular cascades related to epileptogenesis in susceptible individuals. Here, we consider two small proteins, namely, α-synuclein and stefin B, as prototypical candidates to illustrate the underlying mechanism(s). Previous work points to an association between epilepsy and α-synuclein or stefin B, but the mechanism(s) underlying such association remains elusive. We review the evidence to link the structure-function of these proteins with disease processes. Epigenetic mechanisms unrelated to altered DNA sequence(s) that may affect epileptogenesis include transcriptional or posttranscriptional regulation. Such epigenetic mechanisms or their combination(s) enhance the levels of these proteins and as a result the ability to form annular structures, which upon incorporation into membrane form novel ion channels and disturb intracellular ion homeostasis. Alternative epigenetic mechanisms may change amyloidogenic proteins by posttranslational modifications, thereby increasing their propensity to form channels. Further research elucidating the details about the formation of ion channels through these mechanisms and their role in epileptogenesis may define new molecular targets and guide the development of new drug targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fouling Mechanism Study of Nanoporous Membrane by Ultrafitration of Whey Proteins

One of the barriers during whey filtration using UF membrane is the fouling phenomenon of the membrane, which is caused by whey proteins. In this work, the UF membranes were prepared using polysufone (PSf), dimethyl formamide (DMF), 1 wt.% poly vinyl pyrrolidone (PVP) and different concentrations of LiCl via phase inversion induced by immersion precipitation. The prepared membranes were charact...

متن کامل

P 117: Endocannabinoid System as a Novel Therapeutic Target in Epilepsy

Endocannabinoid (ECB) system plays a vital role in responses to stress. Moreover, ECB and its receptors cause anti-inflammatory, anti-oxidative and neuroprotective effects by modulating neuronal, glial and endothelial cell functions. A number of studies have demonstrated ECB system notably defects in neurotraumatic and neurodegenerative diseases like epilepsy, TBI, Alzheimer’s disease and...

متن کامل

Evaluating cytotoxic effects of recombinant fragaceatoxin C pore forming toxin against AML cell lines

Objective(s): Current therapeutic strategies for cancer are associated with side effects and lack of specificity in treatments. Biological therapies including monoclonal antibodies and immune effectors have been the subject of multiple research projects. Pore-forming proteins may become the other biological strategy to overcome the problems associated with current treatments. But detailed mecha...

متن کامل

P 138: Improving Neuroplasticity Through Neuroinflammation Pathways as a Therapeutic Goal in the Treatment of Autism

Neuroplasticity is the brain's ability to reorganize itself by forming new neural connections throughout life. Neuroplasticity allows the neurons in the brain to compensate injury and disease and to adjust their activities in response to new situations or to changes in their environment. At the other side, it is now well established that neuronal function is strongly influenced by both central ...

متن کامل

Recombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin

Background: Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin. Methods: Deposited pdb structure file of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017